Gaussian type orbital

From LibGtoint Wiki
Jump to navigation Jump to search

Cartesian GTO[edit | edit source]

The unnormalized Cartesian GTO (Gaussian type orbital) can be written as

[math]\displaystyle{ \varphi(\boldsymbol{r};\zeta,\boldsymbol{n},\boldsymbol{R})=(r_\text{x}-R_\text{x})^{n_\text{x}}(r_\text{y}-R_\text{y})^{n_\text{y}}(r_\text{z}-R_\text{z})^{n_\text{z}}e^{-\zeta|\boldsymbol{r}-\boldsymbol{R}|^2} }[/math],

where

  • [math]\displaystyle{ \boldsymbol{r}=(r_\text{x},r_\text{y},r_\text{z}) }[/math]: the coordinates of the electron,
  • [math]\displaystyle{ \zeta }[/math]: the orbital exponent; a positive real number,
  • [math]\displaystyle{ \boldsymbol{n}=(n_\text{x},n_\text{y},n_\text{z}) }[/math]: the nonnegative integers, and
  • [math]\displaystyle{ \boldsymbol{R}=(R_\text{x},R_\text{y},R_\text{z}) }[/math]: the coordinates of the center.

The angular momentum quantum number [math]\displaystyle{ l }[/math] of the orbital is [math]\displaystyle{ n_\text{x}+n_\text{y}+n_\text{z} }[/math]. The number of Cartesian GTOs for a given [math]\displaystyle{ l }[/math] is [math]\displaystyle{ (l+1)(l+2)/2 }[/math].

Relations between [math]\displaystyle{ \boldsymbol{n} }[/math] and orbital types
[math]\displaystyle{ l }[/math] [math]\displaystyle{ n_\text{x} }[/math] [math]\displaystyle{ n_\text{y} }[/math] [math]\displaystyle{ n_\text{z} }[/math] Orbital
0 0 0 0 [math]\displaystyle{ s }[/math]
1 1 0 0 [math]\displaystyle{ p_x }[/math]
0 1 0 [math]\displaystyle{ p_y }[/math]
0 0 1 [math]\displaystyle{ p_z }[/math]
2 2 0 0 [math]\displaystyle{ d_{x^2} }[/math]
1 1 0 [math]\displaystyle{ d_{xy} }[/math]
1 0 1 [math]\displaystyle{ d_{xz} }[/math]
0 2 0 [math]\displaystyle{ d_{y^2} }[/math]
0 1 1 [math]\displaystyle{ d_{yz} }[/math]
0 0 2 [math]\displaystyle{ d_{z^2} }[/math]
3 3 0 0 [math]\displaystyle{ f_{x^3} }[/math]
2 1 0 [math]\displaystyle{ f_{x^2y} }[/math]
2 0 1 [math]\displaystyle{ f_{x^2z} }[/math]
1 2 0 [math]\displaystyle{ f_{xy^2} }[/math]
1 1 1 [math]\displaystyle{ f_{xyz} }[/math]
1 0 2 [math]\displaystyle{ f_{xz^2} }[/math]
0 3 0 [math]\displaystyle{ f_{y^3} }[/math]
0 2 1 [math]\displaystyle{ f_{y^2z} }[/math]
0 1 2 [math]\displaystyle{ f_{yz^2} }[/math]
0 0 3 [math]\displaystyle{ f_{z^3} }[/math]
[math]\displaystyle{ \dots }[/math] [math]\displaystyle{ \dots }[/math] [math]\displaystyle{ \dots }[/math] [math]\displaystyle{ \dots }[/math] [math]\displaystyle{ \dots }[/math]

The normalized Cartesian GTO is

[math]\displaystyle{ \Phi(\boldsymbol{r};\zeta,\boldsymbol{n},\boldsymbol{R})=N(\zeta,\boldsymbol{n})\varphi(\boldsymbol{r};\zeta,\boldsymbol{n},\boldsymbol{R}) }[/math],

where

[math]\displaystyle{ N(\zeta,\boldsymbol{n})=\left(\int_{-\infty}^\infty dr_\text{x} \int_{-\infty}^\infty dr_\text{y} \int_{-\infty}^\infty dr_\text{z}~\left|\varphi(\boldsymbol{r};\zeta,\boldsymbol{n},\boldsymbol{R})\right|^2\right)^{-\frac{1}{2}}=\sqrt{\left(\frac{2\zeta}{\pi}\right)^{\frac{3}{2}}\frac{(4\zeta)^{n_\text{x}+n_\text{y}+n_\text{z}}}{(2n_\text{x}-1)!!(2n_\text{y}-1)!!(2n_\text{z}-1)!!}} }[/math].

Spherical GTO[edit | edit source]

The unnormalized spherical GTO can be written as

[math]\displaystyle{ \bar{\varphi}_{l,m}(\boldsymbol{r};\zeta,\boldsymbol{R})=Y_{l,m} |\boldsymbol{r}|^l e^{-\zeta|\boldsymbol{r}-\boldsymbol{R}|^2} }[/math],

where [math]\displaystyle{ Y_{l,m} }[/math] is a real spherical harmonics. The number of spherical GTOs for a given [math]\displaystyle{ l }[/math] is [math]\displaystyle{ 2l+1 }[/math]. The unnormalized spherical GTO can be expressed as a linear combination of the unnormalized Cartesian GTOs.

Unnormalized spherical GTOs
[math]\displaystyle{ l }[/math] [math]\displaystyle{ m }[/math] Orbital Expression
0 0 [math]\displaystyle{ s }[/math] [math]\displaystyle{ \bar{\varphi}_{0,0}=\frac{1}{2}\sqrt{\frac{1}{\pi}}\varphi_{\boldsymbol{n}=(0,0,0)} }[/math]
1 -1 [math]\displaystyle{ p_y }[/math] [math]\displaystyle{ \bar{\varphi}_{1,-1}=\frac{1}{2}\sqrt{\frac{3}{\pi}}\varphi_{\boldsymbol{n}=(0,1,0)} }[/math]
0 [math]\displaystyle{ p_z }[/math] [math]\displaystyle{ \bar{\varphi}_{1,0}=\frac{1}{2}\sqrt{\frac{3}{\pi}}\varphi_{\boldsymbol{n}=(0,0,1)} }[/math]
1 [math]\displaystyle{ p_x }[/math] [math]\displaystyle{ \bar{\varphi}_{1,1}=\frac{1}{2}\sqrt{\frac{3}{\pi}}\varphi_{\boldsymbol{n}=(1,0,0)} }[/math]
2 -2 [math]\displaystyle{ d_{xy} }[/math] [math]\displaystyle{ \bar{\varphi}_{2,-2}=\frac{1}{2}\sqrt{\frac{15}{\pi}}\varphi_{\boldsymbol{n}=(1,1,0)} }[/math]
-1 [math]\displaystyle{ d_{yz} }[/math] [math]\displaystyle{ \bar{\varphi}_{2,-1}=\frac{1}{2}\sqrt{\frac{15}{\pi}}\varphi_{\boldsymbol{n}=(0,1,1)} }[/math]
0 [math]\displaystyle{ d_{z^2} }[/math] [math]\displaystyle{ \bar{\varphi}_{2,0}=\frac{1}{4}\sqrt{\frac{5}{\pi}}\left(2\varphi_{\boldsymbol{n}=(0,0,2)}-\varphi_{\boldsymbol{n}=(2,0,0)}-\varphi_{\boldsymbol{n}=(0,2,0)}\right) }[/math]
1 [math]\displaystyle{ d_{xz} }[/math] [math]\displaystyle{ \bar{\varphi}_{2,1}=\frac{1}{2}\sqrt{\frac{15}{\pi}}\varphi_{\boldsymbol{n}=(1,0,1)} }[/math]
2 [math]\displaystyle{ d_{x^2-y^2} }[/math] [math]\displaystyle{ \bar{\varphi}_{2,2}=\frac{1}{4}\sqrt{\frac{15}{\pi}}\left(\varphi_{\boldsymbol{n}=(2,0,0)}-\varphi_{\boldsymbol{n}=(0,2,0)}\right) }[/math]
3 -3 [math]\displaystyle{ f_{y(3x^2-y^2)} }[/math] [math]\displaystyle{ \bar{\varphi}_{3,-3}=\frac{1}{4}\sqrt{\frac{35}{2\pi}}\left(3\varphi_{\boldsymbol{n}=(2,1,0)}-\varphi_{\boldsymbol{n}=(0,3,0)}\right) }[/math]
-2 [math]\displaystyle{ f_{xyz} }[/math] [math]\displaystyle{ \bar{\varphi}_{3,-2}=\frac{1}{2}\sqrt{\frac{105}{\pi}}\varphi_{\boldsymbol{n}=(1,1,1)} }[/math]
-1 [math]\displaystyle{ f_{yz^2} }[/math] [math]\displaystyle{ \bar{\varphi}_{3,-1}=\frac{1}{4}\sqrt{\frac{21}{2\pi}}\left(4\varphi_{\boldsymbol{n}=(0,1,2)}-\varphi_{\boldsymbol{n}=(2,1,0)}-\varphi_{\boldsymbol{n}=(0,3,0)}\right) }[/math]
0 [math]\displaystyle{ f_{z^3} }[/math] [math]\displaystyle{ \bar{\varphi}_{3,0}=\frac{1}{4}\sqrt{\frac{7}{\pi}}\left(2\varphi_{\boldsymbol{n}=(0,0,3)}-3\varphi_{\boldsymbol{n}=(2,0,1)}-3\varphi_{\boldsymbol{n}=(0,2,1)}\right) }[/math]
1 [math]\displaystyle{ f_{xz^2} }[/math] [math]\displaystyle{ \bar{\varphi}_{3,1}=\frac{1}{4}\sqrt{\frac{21}{2\pi}}\left(4\varphi_{\boldsymbol{n}=(1,0,2)}-\varphi_{\boldsymbol{n}=(3,0,0)}-\varphi_{\boldsymbol{n}=(1,2,0)}\right) }[/math]
2 [math]\displaystyle{ f_{z(x^2-y^2)} }[/math] [math]\displaystyle{ \bar{\varphi}_{3,2}=\frac{1}{4}\sqrt{\frac{105}{\pi}}\left(\varphi_{\boldsymbol{n}=(2,0,1)}-\varphi_{\boldsymbol{n}=(0,2,1)}\right) }[/math]
3 [math]\displaystyle{ f_{x(x^2-3y^2)} }[/math] [math]\displaystyle{ \bar{\varphi}_{3,3}=\frac{1}{4}\sqrt{\frac{35}{2\pi}}\left(\varphi_{\boldsymbol{n}=(3,0,0)}-3\varphi_{\boldsymbol{n}=(1,2,0)}\right) }[/math]
[math]\displaystyle{ \dots }[/math] [math]\displaystyle{ \dots }[/math] [math]\displaystyle{ \dots }[/math] [math]\displaystyle{ \dots }[/math]

The normalized spherical GTO is

[math]\displaystyle{ \bar{\Phi}_{l,m}(\boldsymbol{r};\zeta,\boldsymbol{R})=\bar{N}(\zeta,l)\bar{\varphi}_{l,m}(\boldsymbol{r};\zeta,\boldsymbol{R}) }[/math],

where

[math]\displaystyle{ \bar{N}(\zeta,l)=\sqrt{\left(\frac{2\zeta}{\pi}\right)^{\frac{3}{2}}\frac{(4\zeta)^l}{(2l-1)!!}} }[/math].

Contraction[edit | edit source]

To use GTOs as a basis set in practical quantum chemistry computation, they are almost always contracted using normalized GTOs:

[math]\displaystyle{ \psi(\boldsymbol{r};\boldsymbol{n},\boldsymbol{R})=\sum_i c_i \Phi(\boldsymbol{r};\zeta_i,\boldsymbol{n},\boldsymbol{R}) }[/math] when Cartesian GTOs are contracted, or
[math]\displaystyle{ \bar{\psi}_{l,m}(\boldsymbol{r};\boldsymbol{R})=\sum_i c_i \bar{\Phi}_{l,m}(\boldsymbol{r};\zeta_i,\boldsymbol{R}) }[/math] when spherical GTOs are contracted.

Here, [math]\displaystyle{ c_i }[/math] is the contraction coefficient for the [math]\displaystyle{ i }[/math]-th primitive GTO.

Before quantum chemistry computation, the contracted basis function [math]\displaystyle{ \psi }[/math] and [math]\displaystyle{ \bar{\psi} }[/math] are normalized by scaling the contraction coefficients.